本文目录一览:
- 1、有理数的除法法则
- 2、有理数思维导图
- 3、有理数的除法法则是什么
- 4、有理数乘除法则
- 5、有理数的除法
- 6、怎样学习有理数的加法法则或有理数的加法ppt课件
有理数的除法法则
有理数的除法法则如下:
法则一是除以一个不等于0的数等于乘这个数的倒数。法则二是两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)。法则三是有理数除法与乘法类似,先确定符号,再算绝对值。
一般步骤是两个有理数相除时,首先确定商的符号,其次确定商的绝对值。有理数除法运算的步骤是“÷”改为“×”,除数变倒数在运用乘法运算。有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数。
有理数简介:
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不能为零)4种运算通行无阻。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。
依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数思维导图
有理数思维导图:
有理数基本运算法则:
一、加法运算
1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。
二、减法运算
减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
三、乘法运算
1、同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
四、除法运算
1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。
注意:
零不能做除数和分母。
有理数的除法与乘法是互逆运算。
在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。
有理数的除法法则是什么
法则一:除以一个不等于0的数等于乘以这个数的倒数。(注意:0没有倒数)公式:a÷b=a×1/b。
法则二:两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)公式:a÷b=a×1/b(b≠0)。
有理数的除法法则口诀:从左往右以此计算,有括号的先算括号内。同号的正,异号的负,并把绝对值相乘或相除。
有理数乘法法则:
有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。乘积是1的两个数互为倒数。
多个有理数相乘,几个不是0的数相乘负因数的个数是偶数时,积为正数负因数的个数是奇数时,积为负数。
有理数:
有理数是指可以写成分数形式的数统称为有理数。任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。
整数和分数统称为有理数。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。
有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加。绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
一个数同0相加,仍得这个数。两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a。
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。
有理数的减法:有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b)。
有理数乘除法则
有理数的乘法法则:两数相乘,同号得正,异号得负,并把其绝对值相乘;任何数与零相乘,都得零;几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正。
有理数的除法法则:两数相除,同号得正,异号得负,并把其绝对值相除;零除以任何一个不为零的数,都得零;除以一个数等于乘以这个数的倒数(零不能作除数)。
shaorunjia2001真心为您解答~~
~亲,如果你认可我的回答,请点击【采纳为满意回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力~~【如果我做错了欢迎大家指出我的错误,毕竟我不是万能的】
~如还有新的问题,请好评和采纳后重新另外起一题向我求助,答题不易,敬请谅解~~
O(∩_∩)O,记得好评和采纳,互相帮助
祝共同进步!
有理数的除法
有理数的除法是:
1、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0,且0不能做除数。
2、除以任何一个不为0的数,等于乘这个数的倒数。
3、有理数混合运算时,加减、乘除都是同级运算,同级运算是依照从左至右的运算顺序,即先算乘除,再算加减。有理数的除法可以化为乘法,步骤为:将所有除数转化为其倒数,所有除法转化为乘法,运用乘法运算律求出结果。
怎样学习有理数的加法法则或有理数的加法ppt课件
加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
一个数同零相加,仍得这个数.
减法:减去一个数等于加上这个数的相反数.
乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零.
几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零.
除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零 .