本文目录一览:
行列式与矩阵换行换列
行列式与矩阵有联系,但是不同的数学型式,内容更不一样。
最简单的不同是:行列式表示的是一个具体的“值”,而矩阵表示的是一组“数学式”。
矩阵怎么变成行列式?
一般是将矩阵初等变换,化成三角阵,然后主对角线元素相乘,即可得到。
列三种变换称为矩阵的行初等变换:
(1)对调两行;
(2)以非零数k乘以某一行的所有元素;
(3)把某一行所有元素的k倍加到另一行对应元素上去。
将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。
求相似对角化的矩阵Q的具体步骤为:
求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。
依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。
接下来的求逆运算是一种基础运算,这里不再赘述。
线性代数中矩阵如何变成行列式,或者说他们的区别是什么
你好~~
矩阵和行列式的区别是,行列式只是一个数,是一组数按一定规则进行代数运算的值,而矩阵在本质上并不单单是一个数,它是一个二维的数据表格。只有方阵才有对应的行列式!
具体看下面这几点:
1.
矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。只有方阵才可以定义它的行列式,而对于非方阵不能定义它的行列式。
2.
两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。
3.两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),只能将一行(或列)的元素相加,其余元素照写。
4.数乘矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提公因数也如此。
5.矩阵经初等变换,其秩不变;行列式经初等变换,其值可能改变:换法变换要变号,倍法变换差倍数;消法变换不改变。
怎么把矩阵化为行列式?
行列式,一般是将矩阵初等变换,化成三角阵,然后主对角线元素相乘,即可得到。
列三种变换称为矩阵的行初等变换:
(1)对调两行;
(2)以非零数k乘以某一行的所有元素;
(3)把某一行所有元素的k倍加到另一行对应元素上去。
将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
以上内容参考:百度百科-行列式
如何进行行列式与矩阵之间的相互转化
X转置是一个n维行向量,y是一个n维列向量,x的转置乘n阶方阵乘y得到的是一个1*1的矩阵。 因此,他的行列式的值就是他自己矩阵中的这一个元素。