本文目录一览:
怎样解稍复杂的方程
这是最简单的一元一次方程,记住最关拍盯键的一步:槐答移项要变号。
比如你这道题7x-18=45,在方程左边是-18,移到方程右边就成为18,方程也转换为7x=45+18.
这样的话就铅贺慧简单了,7x=63,x=9.带入方程再检验一遍,没问题。
应用题的话要抓住等式成立的条件,比如总量相等、时间相等。多多练习才行,加油!刚学的时候都有点蒙,以后就好了。
具体列出你的方程出来噻,不好解的方程一般是超越方程,解超越方程的方法就很多了,一般都是迭代解法,给定个初值,开始迭代
五年级上册数学稍复杂的方程教案格式
五年级上册数学稍复杂的方程教案格式
数学教师可以让学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。以下是我整理的五年级上册数学稍复杂的方程教案,希望可以提供给大家进行参考和借鉴。
五年级上册数学稍复杂的方程教案范文一
教学目标:
1、理解实际问题中有关和、差、倍的数量关系;
2、学会设未知数,列形如ax±b=c的方程,解决实际问题。
3、让学生体会列方程解决问题的优越性,掌握列方程解决问题的基本步骤;
4、引导学生根据问题的特点,灵活选择较简洁的算法,进而在提高解决问题的同时,培养学生思维的灵活性。
教学重点:教会学生用方程解决实际问题,学习形如ax±b=c的方程;
教学难点:分析、找出数量间迹茄的相等关系,正确列姿轿察出方程;
教学过程:
一、准备:
1、口答下列方程的解帆肆是多少?
y-20=4 2x=24 a+4=7 15=3x
说说你解方程的思路?
2、说说各题中的等量关系,并列出带有未知数的方程式:
①母鸡有30只,是公鸡的2倍。公鸡有几只?
②甲数是17,是乙数的2倍。乙数是多少?
③ 足球上的白色皮共20块,是黑色皮的2倍。黑色皮有几块?
二、导入例题并教学例1
对题目进行改编,添加条件导出例1:
①足球上的白色皮共20块,比黑皮的2倍少4块。黑色皮有几块?
对这个题目的改编就是我们今天要学习的《稍复杂的方程》。
1、题中的等量关系是什么呢?
(学生分析:白皮块数与黑皮块数之间是一个什么样的关系呢?)黑皮块数×2-4=20 黑皮块数×2-20=4
2、怎样根据关系式列方程呢?
3、小组讨论怎样解答?
4、小组汇报解复杂方程的基本步骤:
①找出题中选题关系; ②写出“解、设”;
③列方程、解方程; ④检验;
三、反馈练习:
①母鸡有30只,比公鸡的2倍少6只。公鸡有几只?
②甲数是17,比乙数的2倍多5。乙数是多少?
3、讨论:小组合作怎样解决这个数学问题?
4、还能用不同的方程解答吗?
四、小结:你学会了什么?
五年级上册数学稍复杂的方程教案范文二
教学目标:
1、解决实际问题中的有关和、差、倍的数量关系。
2、初步学会设计一个未知数,列方程解答含有两个未知数的实际问题。
3、培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。
教学过程:
一、复习
1、4x+5=54 3×2.1+2x=13.4 0.3x÷2=9 4(x+8)=20
2、学校科技小组的男生是女生人数的4倍,设女生有x人,男生有( )人,男女生共( )人。
3、学校图书组有女生x人,男生为女生的2.5倍,男生有( )人,男女同学共( )人。
4、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
二、新授课
教学教科书第70页的例3。
1、 分析题目的已知条件和问题。
2、分析本题的数量关系。
请学生说出数量关系,教师板书。
陆地面积 + 海洋面积 = 地球表面积
教师:这道题目中有两个未知数,而这两个未知数之间存在着倍数关系。我们在解题时,只要设其中的一个未知数为x,而另一个未知数就可以用这个未知数来表示,为了解方程方便,通常情况下,设一倍数为x。
3、列方程解应用题。
解:设陆地面积为x亿平方千米,海洋面积就为2.4x亿平方千米
x + 2.4x = 5.1
(1 + 2.4)x = 5.1
3.4x = 5.1
3.4x÷3.4 = 5.1÷3.4
x=1.5
提问:1.5表示什么?(1.5表示陆地面积是1.5亿平方千米)
那海洋面积该怎样求呢?
一种:5.1-1.5=3.6(亿平方千米)
另一种:2.4 x=2.4×1.5=3.6(亿平方千米)
答:陆地面积是1.5亿平方千米,海洋面积是3.6亿平方千米。
引导学生进行检验。
三、巩固练习
1、甲乙两堆货物共重60吨,乙的重量甲的3倍,甲乙两堆货物各种多少吨?
2、苹果重量是梨子重量的4倍,梨子比苹果少600千克,梨子和苹果各重多少千克?
3、练习13 (4、6、7题 用方程解)学生独立完成,教师评讲
小结:今天你学了什么?有什么收获?(小组同学相互交流)
四、作业: 练习十三(5 —10题)
五年级上册数学稍复杂的方程教案范文三
教学目标:
1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题.
2,学会找出生活问题中相等的数量关系,正确列出方程.
3,培养学生根据具体情况,灵活选择算法的意识与能力.
4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感.
教学重点:用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题.
教学难点:分析问题中的等量关系,并会列出方程解答.
教学准备:多媒体课件.
教学过程:
一,知识回顾:
1,解下列方程.
X+2x=147 y-34=71
2,根据下面叙述说说相等关系,并写出方程.
①公鸡x只,母鸡30只,是公鸡只数的2倍.
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只.
3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密.小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的.黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮 )
让学生独立做,集体订正时,(板书线段图).
二,合作探究:
1,教学例1(媒体出示教材情景图).
"足球上黑色的皮都是五边形,白色的皮都是六边形的.白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮 "
(1)审题,寻找解决问题的有用信息.
提问:"例题与复习题有什么相同的地方 " "有什么不同的地方 "
教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题.今天我们学习用方程解答这类问题.
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果.
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程.
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系.允许学生列出不同的方程.
板书学生的方程并选择2x-4=20讨论它的解法.
学生小组讨论解法.
汇报交流板书:
解:设共有x块黑色皮.
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答.
2,变式练习.
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程 (课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答.
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易.
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示.
②分析,找出数量之间的相等关系,列方程.
③解方程.
④检验,写出答案.
三,巩固应用
1,只列式不计算.(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本.
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只.
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只.
④一个等腰三角形的周长是86厘米,底是38厘米.它的腰是x厘米.
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比_广场面积的2倍少16万平方米._广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米.大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个.一共装了多少筒
3,拓展提高.
①甲乙两数的和是90,甲数是乙数的2倍.甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四,全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
《稍复杂的方程》数学教案
作为一名老师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。我们该怎么去写教案呢?以下是我收集整理的《稍复杂的方程》数学教案,仅供参考,希望能够帮助到大家。
《稍复杂的方程》数学教案1
教学目标
1。通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。 2。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。 3。用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育。
教学重难点
掌握列方程解决问题的方法及步骤,会解稍复杂的方程。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。
教学过程
准备题:(课件出示)
1。用含有字母的式子表示下列数量
(1)比ⅹ的3倍多5
(2)比ⅹ的4倍少2
(3)2个ⅹ与34的和
(4)ⅹ的5倍与9的差
说说你解方程的思路?
2、解下列方程。
3x=147 y—34=71
3、根据下面叙述说说相等关系,并写出方程。
小鹏有x岁,老师有35岁,比小鹏岁数的3倍少1岁。
一、情境激趣,导入新课
出示足球
1、实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。解决问题
足球上黑色的皮都是五边形,白色的皮都是六边形的,
黑色皮共有12块,白色皮比黑色皮的2倍少4块。共有多少块白色皮?怎样列算术式计算?
12×2—4
=24—4
=20(块)
答:共有20块白色皮。
2、合作探究
(1)请同学们观察主题图,寻找你所需要的信息。
例1:足球上白色皮共有20块,比黑色皮的2倍少4块,共有多少块黑色皮猛喊裂?
(2)汇报交流:你知道了那些信息?足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”
审题,寻找解决问题的有用信息。
揭示课题:今天我们学习用方程解答这类问题。
教师板书:稍复杂的方程
分析、找出数量之间的相等关系。白色皮和黑色皮有什么关系?
学生小组讨论,
汇报结果。
可能出现的'等量关系是:
黑色皮的块数2—4=白色皮的块数
黑色皮的块数2—白色皮的块数=4
黑色皮的块数2=白色皮的块数+4
(3)同桌讨论怎样把x表示什么写清楚。
(4)怎样列出方程。
(5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。
师板书学生的方程并选择2x—4=20讨论它的解法
课件演示:2ⅹ—20=4的解法。
学生小组讨论解法汇报交流师板书:
变式练习:
足球上黑色的皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍
多4块。共有多少块黑色皮?
(6)引导学生总结
列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答渗笑案。
二、学以致用,拓展练习
同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?
1、姐姐今年20岁,刚好比弟弟年龄的2倍还多4岁,弟弟今年多少岁?
2、只列方程不解枝闭答。
要求独立完成,同桌检查,交流展示。
3、解下列方程,独立完成后,全班讲评。
4、北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是都是平方米?
独立完成,集体讲评。
5、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?独立完成,集体讲评。说说理由。
三、小结
通过这节课的学习,你有哪些收获和遗憾?
师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。
板书:
稍复杂的方程
黑色皮的块数2—4=白色皮的块数2x—4=20
黑色皮的块数2—白色皮的块数=4 2x—20=4
黑色皮的块数2=白色皮的块数+4 2x=20+4
《稍复杂的方程》数学教案2
教学目标
知识与技能:
通过分析数量关系,初步掌握列方程解决实际问题的一般步骤和方法。
过程与方法:
会列形如ax+b=c或ax—b=c的方程,并能正确地解答。
情感态度与价值观:
感受数学与现实生活的联系,培养学生数学应用意识和良好的学习习惯。
教学重难点
教学重点:
掌握较复杂方程的解法。
教学难点:
正确分析题目中的数量关系。
教学工具
多媒体设备
教学过程
教学过程设计
1情境引入
(一)知识回顾:
解下列方程:
3x=147 y—34=71
(二)导入例题
提问:同学们在课外活动时间喜欢玩球吗?都参加哪些球类运动了?下面这组图片与我们今天所要学习的《稍复杂的方程》有关。(出示主题图课件)
2揭示课题
板书课题——稍复杂的方程
3新知探究
1、师:让我们来看看,他们都说了些什么?
黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮?
(课件出示)你从中得到了什么信息?
生:从他们的对话中,我了解到了足球上黑色的皮都是正五边形,白色的皮是都是六边形。
师:正因为足球上有这样有趣的组合,令许多数学家为之着迷。我们一起看看,足球的黑皮与白皮数量到底有什么秘密关系呢?
师:那么哪个颜色更多一些哪?
生:白色多一些。
师:同学们真细心,学习就应该如此,因为只有细心观察才能有透彻的理解。那同学们能不能帮三位小朋友解决一下这个问题呢?
生说师板书:
解:12×2—4
=24—4
=20(块)
2、同学们真棒,接下来,就让我们一同来看下面这道例题吧。请一名同学来读一下。
足球上黑色的皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍少4块。共有多少块黑色皮?(课件出示)
3、请同学想想,这道题中的等量关系是什么?
4、指名说。(课件出示)
提问:根据等量关系,结合题目中的信息,你能确定哪些是已知量,哪些是未知量吗?请选择一个数量关系解决问题。
5、能根据这些关系式列方程解答吗?请大家自己列方程解答,然后小组相互交流,讨论方程列的是否正确,并说说如何来解答。
6、指名学生口答,老师板书解题过程。
解:设共有x块黑色皮。
黑色皮的块数×2—4=白色皮的块数
2x—4 = 20(2x看做一个整体)
2x+4—4 = 20+4
2x = 24
X =12
师:在这里,我们先把2X看作一个整体,根据天平平衡的原理,方程的左右两边同时减去4,变成2X=16,再根据天平平衡的原理,方程的左右两边同时除以2,最后得到X=8。这里要注意什么?(有X就不写单位名称。)一起来说答,到这里,我这道题就做完了,可以吗?为什么?
生:没完,还要检验X = 12是不是方程的解。
生说师板书:
检验:左边=2×12—4
=20比以前的方程多了一步。
=右边
所以,X = 12是方程的解。
7、这道题还能列出怎样的方程?谁愿意上前面来板演哪?并给同学们讲一讲。(这里可以根据天平平衡的原理,也可以根据各部分之间的关系。)
8、这位同学表现得真出色,老师真为你感到高兴。
9、我们不仅要学会知识,更要学会总结方法。接下来,就请同学们以同桌为单位总结一下列方程解决问题的方法吧。
学生回顾总结列方程解决问题的一般步骤。
看书质疑,提高认识。
学生独立解答,汇报交流时,重点说说自己是怎样的想的。
学生汇报自己是根据什么条件列的数量关系。
师:同学们,我们今天学习的方程比以前的稍为复杂一些,单是也难不倒我们,咱们一起来总结归纳一下这类方程的解法好吗?
师生归纳总结:解形如ax—b=c(a≠0)这样的方程,也要根据等式的性质,具体步骤如下:
解:ax—b=c
ax—b+b=c+b
ax=c+b
ax÷a=(c+b)÷a
x=(c+b)÷a
师:我们在一起来归纳一下解稍复杂方程的基本步骤。
解稍复杂方程的基本步骤。(课件出示)
(1)明题意,写解设。
(2)找等量,列方程。
(3)解方程,要检验。
师:我们生活的地球上,有陆地也有海洋,同学们对她了解多少呢?下面我们一起来看一下吧!
师课件出示例题。
例题:地球的表面积是5。1亿平方千米,其中,海洋面积约为陆地面积的2。4倍,地球上陆地和海洋的面积分别是多少亿平方千米?
师:这道题的等量关系师什么?
生:陆地面积+海洋面积=地球面积。
师指导设未知数。
生:设陆地面积为x亿平方千米,则海洋面积为2。4x亿平方千米。
生试着列方程解答。
x+ 2.4x=5.1
(1+2.4)x=5.1(用了什么运算规律?)
3.4x=5.1
x=1.5
所以海洋面积为2。4×1.5=3.6(亿平方千米)。
师:如果设海洋面积为x亿平方千米应如何列方程呢?
生:设海洋面积为x亿平方千米,则陆地面积为x÷2。4亿平方千米。
x+ x÷2.4=5.1
2.4x+x=5.1×2.4(等式的基本性质)
3.4x=12.24
X=3.6
所以陆地的面积为3.6÷2.4=1.5(亿平方千米)
师:你认为哪个方程更方便解呢?
生讨论汇报病说明理由。
师:同学们再来看看下面这道题:
例题:妈妈去超市买水果,每千克梨2。8元,妈妈买了苹果和梨各2千克,共花了10。4元。每千克苹果多少元?
师:请同学们认真阅读,找找题目中的等量关系。
生读题,找等量关系。
苹果的总价+梨的总价=总钱数或总钱数—苹果的总价=梨的总价或两种水果的单价×2=总钱数
师:选一个你最喜欢的等量关系,根据这个关系式列出方程,试试看。
生:列式解答。
(1)苹果的总价+梨的总价=总钱数
设苹果每千克x元,则根据题意有
2x+2×2.8=10.4
2x+5.6=10.4
2x=10.4—5.6
2x=4.8
x=2.4
(2总钱数—苹果的总价=梨的总价
设苹果每千克x元,则根据题意有
10.4—2x=2×2.8
10.4—2x+2x=2×2.8+2x
2x+5.6=10.4
2x=10.4—5.6
2x=4.8
x=2.4
(3)两种水果的单价×2=总钱数
设苹果每千克x元,则根据题意有
(2.8+ x)×2=10.4
(2.8+ x)×2÷2=10.4÷2
2.8+ x=5.2
x=5.2—2.8
x=2.4
师:虽然这个题的数量关系比较复杂,但难不倒我们。同学们仍然找到了这道题的等量关系,根据等量关系列出了方程并解出了方程。
4巩固提升
(一)、只列方程不解答。
(1)图书室有文艺书180本,比科技书的2倍多20本,科技书x本。
2x+20=180或180—20x = 20或……
(2)养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。
2x—40=400或2x — 400= 40或……
(3)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。
3x—8=25或3x — 25= 8或……
(4)一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。
2x+38=86或86— 2x = 38或……
(二)用含有字母的式子表示下面的数量关系。
比B多3.7的数(B+3.7)
18个A的和(18A)
X除以20的商(X÷20)
A减去C的差的7.1倍。(7.1(A—C))
比X的5倍多11.2的数(5X+11.2)
(三)、根据题意列方程。
(1)故宫的面积是72万平方千米,比天安门面积的2倍少16万平方千米。天安门广场的面积是多少万平方千米?(设天安门广场的面积是X平方米,则2X—16=72)
(2)共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少(设一共装了X桶,5X+3=1428)
课后小结
通过本节课的学习,你有什么收获?可以帮助你解决哪些平时遇到的问题?
(1)明题意,写解设。
(2)找等量,列方程。
(3)解方程,要检验。
板书
稍复杂的方程
解:设共X块黑色皮。
2X—20=4
2X=4+20(学生书写)
2X=24
X=24÷2
X=12
答:共有12块黑色皮。
归纳总结:解形如ax—b=c(a≠0)这样的方程,也要根据等式的性质,具体步骤如下:
解:ax—b=c
ax—b+b=c+b
ax=c+b
ax÷a=(c+b)÷a
x=(c+b)÷a
解方程的步骤:
(1)明题意,写解设。
(2)找等量,列方程。
(3)解方程,要检验。
《稍复杂的方程》数学教案3
教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例2若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解答例2这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例2,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。